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‘ Background I

e Today’s talk is about linear regression

e But the motivation comes from the area of flexible function
fitting: “Boosting”— Freund & Schapire (1995)
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Least Squares Boosting'

Friedman, Hastie & Tibshirani — see Elements of Statistical

Learning (chapter 10)

Supervised learning: Response y, predictors x = (z1,22...2p).

1. Start with function F'(x) = 0 and residual r =y
2. Fit a CART regression tree to r giving f(x)
3. Set F(x) «— F(x)+ef(x), r < r — ef(x) and repeat step 2

many times
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Least Squares Boosting'

Prediction Error

e = .01

Number of steps
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/ Linear Regression I \

Here is a version of least squares boosting for multiple linear

regression: (assume predictors are standardized)

(Incremental) Forward Stagewise

1. Start with r =y, 81, 2,...8p, = 0.

2. Find the predictor x; most correlated with r
3. Update §; < (B, + d;, where ; = € - sign(r, ;)

4. Set r < r —9; - x; and repeat steps 2 and 3 many times

0; = (r,x;) gives usual forward stagewise; different from forward

stepwise

&Analogous to least squares boosting, with trees=predictors /
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/ Prostate Cancer Data'
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Linear regression via the Lasso (Tibshirani, 1995) I

e Assume y =0, ; =0, Var(x,;) =1 for all j.

e Minimize Zz(y’b — Zj ZCijﬁj)2 subject to Zj |ﬁ]‘ <s

e With orthogonal predictors, solutions are soft thresholded

version of least squares coefficients:

sign(9;)(10;] — 1)+
(v is a function of s)

e For small values of the bound s, Lasso does variable selection.

See pictures

\_ /
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Lasso and Ridge regression'
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More on Lasso'

e Current implementations use quadratic programming to

compute solutions

e Can be applied when p > n. In that case, number of non-zero

coefficients is at most n — 1 (by convex duality)

e interesting consequences for applications, eg microarray data

\_
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Why are Forward Stagewise and Lasso so similar?'

e Are they identical?

e In orthogonal predictor case: yes
e In hard to verify case of monotone coefficient paths: yes
e In general, almost!

e Least angle regression (LAR) provides answers to these
questions, and an efficient way to compute the complete Lasso

sequence of solutions.

\_ /
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/ Least Angle Regression — LARI

Like a “more democratic” version of forward stepwise regression.

1. Start with r = v, Bl, Bg, .. .Bp = 0. Assume z; standardized.
2. Find predictor x; most correlated with 7.

3. Increase (3; in the direction of sign(corr(r,z;)) until some
other competitor x; has as much correlation with current

residual as does T

4. Move (Bj, ) in the joint least squares direction for (x;, k)
until some other competitor x, has as much correlation with

the current residual

5. Continue in this way until all predictors have been entered.

Stop when corr(r,z;) =0V 7, i.e. OLS solution.

~
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My X1

The LAR direction u, at step 2 makes an equal angle with x; and

/
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/ Relationship between the 3 algorithms' \

e Lasso and forward stagewise can be thought of as restricted
versions of LAR

e For Lasso: Start with LAR. If a coefficient crosses zero, stop.
Drop that predictor, recompute the best direction and
continue. This gives the Lasso path

Proof (lengthy): use Karush-Kuhn-Tucker theory of convex

optimization. Informally:

2
853 {Hy X + )‘ZWJ‘}—O

&
A

(xj,r) = §Sigﬂ(3j) if 3; # 0 (active)

\_ /
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e For forward stagewise: Start with LAR. Compute best (equal
angular) direction at each stage. If direction for any predictor j
doesn’t agree in sign with corr(r, x;), project direction into the

“positive cone” and use the projected direction instead.

e in other words, forward stagewise always moves each predictor

in the direction of corr(r, z;).

e The incremental forward stagewise procedure approximates
these steps, one predictor at a time. As step size € — 0, can
show that it coincides with this modified version of LAR

/
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‘More on forward stagewise'

e Let A be the active set of predictors at some stage. Suppose
the procedure takes M = ) M, steps of size € in these
predictors, M, in predictor j (M; =0 for j ¢ A).

e Then 3 is changed to § + (s1 My /M, soMy/M, - s, M, /M)
where s; = sign(corr(r, z;))
o 0= (My/M,---M,/M) satisfies
f = argmin Z(Tz — Z 7:75;05)%,
i jeA
subject to 6; > 0 for all 5. This is a non-negative least squares

estimate.

/
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The forward stagewise direction lies in the positive cone spanned

by the (signed) predictors with equal correlation with the current

\residual.

/
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‘ Summary I

e LARS—uses least squares directions in the active set of variables.

e Lasso—uses least square directions; if a variable crosses zero, it is

removed from the active set.

e Forward stagewise—uses non-negative least squares directions in

the active set.

/
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Benefits I \

Possible explanation of the benefit of “slow learning” in
boosting: it is approximately fitting via an L; (lasso) penalty

new algorithm computes entire Lasso path in same order of
computation as one full least squares fit. Splus/R Software on
Hastie’s website:
www-stat.stanford.edu/~hastie/Papers#LARS

Degrees of freedom formula for LAR:

After k steps, degrees of freedom of fit = k (with some
regularity conditions)

For Lasso, the procedure often takes > p steps, since predictors
can drop out. Corresponding formula (conjecture):

Degrees of freedom for last model in sequence with k predictors

is equal to k. /
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Degrees of freedom'
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/ Degree of Freedom result'

n

df(fr) =) cov(fii,yi)/0” =k

1=1

~

Proof is based on is an application of Stein’s unbiased risk estimate
(SURE). Suppose that g : R™ — R"™ is almost differentiable and set
V-g=> " ,09;/0x;. If y ~ Ny(u,c°I), then Stein’s formula
states that

Zcov(gq;, yi) /o = E[V - g(y)].

LHS is degrees of freedom. Set g(-) equal to the LAR estimate. In
orthogonal case, 0g;/0x; is 1 if predictor is in model, 0 otherwise.

Hence RHS equals number of predictors in model (= k).

\Non—orthogonal case is much harder. /
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‘Software for R and Splus'

lars () function fits all three models: lasso, lar or
forward.stagewise. Methods for prediction, plotting, and
cross-validation. Detailed documentation provided. Visit
www-stat.stanford.edu/~hastie/Papers/#LARS

of variables. Computations managed by updating the Choleski R

\_

Main computations involve least squares fitting using the active set

matrix (and frequent downdating for lasso and forward stagewise).

/
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MicroArray Example I

Expression data for 38 Leukemia patients (“Golub” data).
X matrix with 38 samples and 7129 variables (genes)
Response Y is dichotomous ALL (27) vs AML (11)

LARS (lasso) took 4 seconds in R version 1.7 on a 1.8Ghz Dell

workstation running Linux.

In 70 steps, 52 variables ever non zero, at most 37 at a time.

/
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Standardized Coefficients
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10—fold cross—validation for Leukemia Expression Data (Lasso)
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10—fold cross—validation for Leukemia Expression Data (LAR)
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Standardized Coefficients
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Forward Stagewise
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10—fold cross—validation for Leukemia Expression Data (Stagewise)
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A new result'

(Hastie, Taylor, Tibshirani, Walther)

Criterion for forward stagewise
2
Minimize Zz (ZJ@ — Zj ZCijﬁj (t))
Subject to » fg |8%(s)|ds <t (Bounded L; arc-length)

\_
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‘ Future directions I

e use ideas to make better versions of boosting (Friedman and
Popescu)

e Application to support vector machines (Zhu, Rosset, Hastie,
Tibshirani)

o “fused lasso”:

3 = argmin Z(yz — Zwijﬁj)Q
( J

p
subject toz 18] < s1

j=1

p
and Z 185 — Bj—1]| < 52
j=2

Has applications to microarrays and protein mass spec

~
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