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Abstract

Suppose you are given some dataset drawn from an underlyaimp
bility distribution P and you want to estimate a “simple” subsebf input
space such that the probability that a test point drawn ffolies outside of
S is bounded by some a priori specifiedetweer) and1.

We propose a method to approach this problem by trying tonesé a
function f which is positive onS and negative on the complement. The
functional form off is given by a kernel expansion in terms of a potentially
small subset of the training data; it is regularized by coliitrg the length of
the weight vector in an associated feature space. The expermefficients
are found by solving a quadratic programming problem, whighdo by
carrying out sequential optimization over pairs of inputtpans. We also
provide a preliminary theoretical analysis of the statitiperformance of
our algorithm.

The algorithm is a natural extension of the support vectgosthm to
the case of unlabelled data.

Keywords. Support Vector Machines, Kernel Methods, Density Estima-
tion, Unsupervised Learning, Novelty Detection

1 Introduction

During recent years, a new set of kernel techniques for siget learning has
been developed (Vapnik, 1995; Scholkopf et al., 1999agcipally, support vec-
tor (SV) algorithms for pattern recognition, regressiotireation and solution of
inverse problems have received considerable attention.

There have been a few attempts to transfer the idea of usimglketo com-
pute inner products in feature spaces to the domain of umgspd learning. The
problems in that domain are, however, less precisely specifbenerally, they can
be characterized as estimatifighctionsof the data which tell you something in-
teresting about the underlying distributions. For insegnernel PCA can be char-
acterized as computing functions which on the training gadauce unit variance
outputs while having minimum norm in feature space (Sobllet al., 1999b).
Another kernel-based unsupervised learning techniqgelagzed principal man-
ifolds (Smola et al., 1999), computes functions which givespping onto a lower-
dimensional manifold minimizing a regularized quantiaaterror. Clustering al-
gorithms are further examples of unsupervised learningrtiegies which can be
kernelized (Scholkopf et al., 1999b).

An extreme point of view is that unsupervised learning isubestimating
densities. Clearly, knowledge of the density B®fwould then allow us to solve
whatever problem can be solved on the basis of the data.



The present work addresses an easier problem: it proposdgaithm which
computes a binary function which is supposed to captureonsgin input space
where the probability density lives (its support), i.e. adtion such that most of the
data will live in the region where the function is nonzerol{8lkopf et al., 1999).
In doing so, it is in line with Vapnik’s principle never to s@ a problem which
is more general than the one we actually need to solve. Mergivs applicable
also in cases where the density of the data’s distributiorotseven well-defined,
e.g. if there are singular components.

The article is organized as follows. After a review of somevwus work in
Sec. 2, we propose SV algorithms for the considered problSec. 4 gives de-
tails on the implementation of the optimization proceddodpwed by theoretical
results characterizing the present approach. In Sec. 6 pply ghe algorithm to
artificial as well as real-world data. We conclude with a d&sion.

2 Previous Work

Part of the motivation for the present work was a paper of Bamid and Lin-
denbaum (1997). It turns out that there is a considerableuatmaf prior work
in the statistical literature, and in this section we brieflymmarise that. We do
not attempt a detailed comparison of the proof techniquethefkpecific results
achieved, but confine ourselves to placing the previous wodontext.

In order to summarize the methods, it is convenient to intoedthe following
definition of a (multi-dimensional) quantile function (iotuced by Einmal and
Mason (1992)). Lek,...,x, be i.i.d. random variables in a s&t with distri-
bution P. Let € be a class of measurable subset&(aind let) be a real-valued
function defined or®. Thequantile functiorwith respect tq P, A, €) is

U(a) =inf{\(C): P(C) > a,C €€} 0<a<l.

If P, is the empirical distribution®,(C) = %Zf:] 1¢(x;)), theempirical quan-
tile functionis

Ui(a) =inf{\(C): P(C) > a,CeC} O0<a<l.

We denote byC'(«) and Cy(«) the (not necessarily uniqué) € € that attains
the infimum (when it is achievable). The most common choice if Lebesgue
measure, in which casé(«) is the minimum volume~ € € that contains at least
a fractiona: of the probability mass. We will assumeis Lebesgue measure from
here on. Estimators of the forti,(«) are calledminimum volume estimators



Estimating the support of a density. Observe that fo€ being all Borel mea-
surable sets(1) is thesupportof the densityp corresponding td?, assuming it
exists. (Note that’(1) is well defined even whep does not exist.) For smaller
classeg, C(1) is the minimum volume” € € containing the support gf. The
problem of estimating” (1) appears to have first been studied by Geffroy (1964)
who consideredC = R? with piecewise constant estimators. There have been a
number of works studying a natural nonparametric estimattaér(1) (e.g. Cheva-

lier (1976); Devroye and Wise (1980); Cuevas (1990); seeyi@hml, 1997) for
further references). The nonparametric estimator is simpl

Cr = | B(xi, ) €N

whereB(x, €) is thely(X) ball of radiuse centered ak and (e, ), IS an appropri-
ately chosen decreasing sequence. Devroye and Wise (1980gd the asymp-
totic consistency of (1) with respect to the symmetric défece betweer€' (1)
and C,. Cuevas (1990) did the same, but for Hausdorff distance. v&uand
Fraiman (1997) studied the asymptotic consistencypitig-in estimator ofC'(1):
Crlug=in — fx:5,(x) > 0} wherep, is a kernel density estimator. In order to
avoid problems withC®'us~ " they actually analyzed@?"® ™ := {x:p,(x) > f;}
where(5y), is an appropriately chosen sequence. Clearly for a giveritmigon,

« is related tog, but this connection can not be readily exploited by thisetgb
estimator.

The most recent work relating to the estimation(fl) is by Gayraud (1997)
who has made an asymptotic minimax study of estimatofaraftionalsof C(1).
Two examples areol C'(1) or the center of”(1). (See also (Korostelev and Tsy-
bakov, 1993, Chapter 8).)

Estimating high probability regions (« # 1). Turning to the case where < 1,
it seems the first work was reported by Sager (1977) and thetigda (1987)
who considered = R? with € being the class of closed convex setSin(They
actually considered density contour clusters; see belovafdefinition.) Nolan
(1991) considered higher dimensions wittbeing the class of ellipsoids.
Tsybakov (1997) has studied an estimator based on piec@aigromial ap-
proximation ofC'(«) and has shown it attains the asymptotically minimax rate for
certain classes of densitips
Polonik (1997) has studied the estimation @f«) by Cy(«). He derived
asymptotic rates of convergence in terms of various measifrachness of. He
considers both VC classes and classes with alogvering number with bracket-



ing of orderO(e") for » > 0. He also summarizes a number of other previous
works on minimum volume estimators which we have not meetibnere.

Polonik (1995b) has also studied the use of the “excess rpassach” (Muller,
1992) to construct an estimator of “generalizeetlusters” which are related to
C(a).

Define theexcess mass ovérat levela as

Ee(a) = sup{H,(C):C € €}

whereH,(-) = (P — a))(:) and again\ denotes Lebesgue measure. Any set
I'e(a) € € such that
Ee(a) = Hy(Te(0))

is called egeneralizedy-cluster inC. ReplaceP by P, in these definitions to obtain
their empirical counterpart&, ¢(«) andIl’; (). In other words, his estimator is

['pe(a) = argmax {(P, —aX)(C) : C € C}

where themax is not necessarily unique. Now whilBt ¢(«) is clearly different to
Cy(a), itis related to it in that it attempts to find small regiongwas much excess
mass (which is similar to finding small regions with a givencamit of probability
mass). Actuallyl’; ¢(«) is more closely related to the determinationdensity
contour clustersat levela:

ep(a) = {x:p(x) > a}.

Simultaneously, and independently, Ben-David and Lindeni (1997) stud-
ied the problem of estimating, (). They too made use of VC classes but stated
their results in a stronger form which is meaningful for fingample sizes.

Finally we point out a curious connection between minimurturee sets of
a distribution and its differential entropy in the case tiats one dimensional.
SupposeX is a one dimensional random variable with dengity.et S = C(1) be
the support op and define thelifferential entropyof X by

h(X) = - /5 p(x) log p(x)da.

Fore > 0 and/ € N, define thaypical setAg’) with respect tg by

AY = {(z1,...,27) € 8% | = Llogp(z1,...,2) — h(X)] < €},

€ =

wherep(z1,...,2¢) = Hlep(m,;).



If (ay), and(by), are sequences, the notatign= b, meandim,_. } log ‘;—ﬁ =
0. (Cover and Thomas, 1991, p.227) show that foeall < % then

vol A = vol Cy(1 — §) = 27,

They point out that this result “indicates that the voluméhefsmallest set that con-
tains most of the probability is approximatel{?. This is a/-dimensional volume,
so the corresponding side length(&")1/¢ = 2". This provides an interpretation
of differential entropy.”

Applications. A number of applications have been suggested for these tech-
niques. They include problems in medical diagnosis (Tarass et al., 1995),
marketing (Ben-David and Lindenbaum, 1997), condition itmsimg of machines
(Devroye and Wise, 1980), estimating manufacturing yiéBtoneking, 1999),
econometrics and generalized nonlinear principal cunieylfakov, 1997; Ko-
rostelev and Tsybakov, 1993), regression and spectraysinalPolonik, 1997),
tests for multimodality and clustering (Polonik, 1995bylarthers (Muller, 1992).

Polonik (1995a) has shown how one can use estimato€$(aj to construct
density estimators. The point of doing this is that it allawe to encode a range of
prior assumptions about the true dengityrat would be impossible to do within the
traditional density estimation framework. He has showmgsptic consistency
and rates of convergence for densities belonging to VCselm®r with a known
rate of growth of metric entropy with bracketing.

Relationship with the Present Work. The present paper describes an algorithm
which finds regions close t6'(«). Our clas<C is defined implicitly via a kernet
and the smoothness of the boundary(bttan be controlled by the choice &f
We do not try and findhe minimum volume such region. On the other hand, our
algorithm has tractable computational complexity, evesaweral variables. Our
theory, which uses very similar tools to those used by P&logives results that
we expect will be of more use in a finite sample size setting.

3 Algorithms
We firstintroduce terminology and notation conventions. dMesider training data

X1,...,%X¢ € X, (2)

where/ € N is the number of observations, afidis some set. For simplicity,



we think of it as a compact subset &f¥. Let ® be a feature maff — F, i.e.
a map into a dot product spaéésuch that the dot product in the imaged®fcan
be computed by evaluating some simple kernel (Boser et@92;1Vapnik, 1995;
Scholkopf et al., 1999a)

k(x,y) = (2(x) - @(y)), ®3)

such as the Gaussian kernel
k(x,y) = e IvIP/e, (4)

Indices: andj are understood to range ovEr. ..,/ (in compact notationi, j €
[/]). Bold face greek letters denofedimensional vectors whose components are
labelled using normal face typeset.

In the remainder of this section, we shall develop an algoritvhich returns a
function f that takes the value-1 in a “small” region capturing most of the data
points, and—1 elsewhere. Our strategy is to map the data into the featweesp
corresponding to the kernel, and to separate them from igenarith maximum
margin. For a new point, the valuef (x) is determined by evaluating which side
of the hyperplane it falls on, in feature space. Via the faedo utilize different
types of kernel functions, this simple geometric pictureresponds to a variety of
nonlinear estimators in input space.

To separate the data set from the origin, we solve the foligwjuadratic pro-
gram:

min slwl> + 536 —p )
wEF,&ER[,pGR
subjectto (w-®(x;)) >p— &, & > 0. (6)

Here,v € (0,1) is a parameter whose meaning will become clear later.
Since nonzero slack variablésare penalized in the objective function, we can
expect that itv andp solve this problem, then the decision function

f(x) = sgn((w - ®(x)) — p) ()

will be positive for most examples; contained in the training set, while the SV
type regularization terrfjw|| will still be small. The actual trade-off between these
two goals is controlled by.

Using multipliersa;, 8; > 0, we introduce a Lagrangian

L(wagapa a’IB) = %HU)HQ_{_% Z f7fpfz(l’7((ﬂ)@(XJ)*p—{—f,)*Z ﬁ?gﬂ
i i i (8)



and set the derivatives with respect to the primal variahles, p equal to zero,
yielding
w = Z a; P (x;), 9)

Q; = G;i < Z a; = 1. (20)

In (9), all patterng{x;:7 € [¢], a; > 0} are called Support Vectors. Together with
(3), the SV expansion transforms the decision functionri®) & kernel expansion

x) = sgn (Z a;ik(x;,x) — p) . (11)

Substituting (9) — (10) intd. (8), and using (3), we obtain the dual problem:

1 : 1

min 7 Zjoz,;ozjk(xi,xj) subject to0 < o; < i ZQ, =1. (12)
2 A

One can show that at the optimum, the two inequality congs#6) become equal-

ities if a; andg; are nonzero, i.e. il < o; < 1/(v¥f). Therefore, we can recover

p by exploiting that for any such;, the corresponding pattew; satisfies

p=(w-®(x;)) Z()’J Xj,X;). (13)

Note that ifv approache$, the upper boundaries on the Lagrange multipliers
tend to infinity, i.e. the second inequality constraint i) becomes void. The
problem then resembles the correspondiagd marginalgorithm, since the penal-
ization of errors becomes infinite, as can be seen from timegbidbjective function
(5). Itis still a feasible problem, since we have placed rarigtion onp, sop can
become a large negative number in order to satisfy (6). If ae fequiredo > 0
from the start, we would have ended up with the constraifto; > 1 instead
of the corresponding equality constraint in (12), and thétipliers «; could have
diverged.

To conclude this section, we note that one can alsobadls to describe the
data in feature space, close in spirit to the algorithms dfo8@pf et al. (1995),
with hard boundaries, and Tax and Duin (1999), with “soft givas.” Again, we
try to putmost ofthe data into a small ball by solving, fore (0,1),

min R? + % &
ReR,EeR! ceF ’
subject to |®(x;) —c|>? <R?*+ &, & >0 foriell. (14)

7



This leads to the dual

min. 32 aiogk(xi, x5) =37, aik(xi, x;) (15)
subject to 0<ai <L, >S,a=1 (16)

and the solution
c= Z a; ®(x;), a7)

corresponding to a decision function of the form

f(x) =sgn (R2 — Zaiajk(xi, x;) + 2 Z a;ik(x;,x) — k(x,x)) . (18)

ij i

Similar to the aboveR? is computed such that for ang with 0 < o; < 1/(v4)
the argument of the sgn is zero.

For kernelsk(x,y) which only depend ox — y, k(x,x) is constant. In this
case, the equality constraint implies that the linear terithé dual target function
is constant, and the problem (15-16) turns out to be equivate(12). It can be
shown that the same holds true for the decision functiongédme two algorithms
coincide in that case.

4 Optimization

The last section has formulated quadratic programs (QR)dimputing regions
that capture a certain fraction of the data. These constladptimization problems
can be solved via an off-the-shelf QP package to computedindan. They do,
however, possess features that set them apart from genBecr@ost notably the
simplicity of the constraints. In the present section, wscde an algorithm which
takes advantage of these features and empirically scales teelarge data set sizes
than a standard QP solver with time complexity of ordg¢?) (cf. Platt, 1999).
The algorithm is a modified version of SMO (Sequential Minlif@g@timization),
an SV training algorithm originally proposed for classifioa (Platt, 1999), and
subsequently adapted to regression estimation (Smola @wikspf, 1998).

The strategy of SMO is to break up the constrained mininoratif (12) into
the smallest optimization steps possible. Due to the cainston the sum of the
dual variables, it is impossible to modify individual varias separately without
possibly violating the constraint. We therefore resort ptiraizing over pairs of
variables.



Elementary optimization step. For instance, consider optimizing ove; and
as with all other variables fixed. Using the shorthaAg; := k(x;,x;), (12) then
reduces to
1 2 2
({?g}z 5 Z Ofiﬂijij + Z o;C; + C, (19)
3,7=1 =1
with C; == Y05 o K andC = Y .5 v K5, subject to
1 2
OSOH,OQSW, zai_Aa (20)
1=

whereA :=1 - 3! . ;.
We discardC, which is independent af; andas, and eliminatex; to obtain
1 1
min i(A — (XQ)QKH + (A — (XQ)(J(QKlQ + 5(1%]{22 + (A — (){2)01 +asCy, (21)
a2
with the derivative
7(A*O{2)K11 +(A*2(){2)K12+O{2K22 — C1 + Cs. (22)
Setting this to zero and solving far, we get
A(KH — K12) + C1 — Oy
Ky + Ky —2K15
Onceay is found, @; can be recovered from; = A — ay. If the new point
(a1, ) is outside ofl0, 1/(v¢)], the constrained optimum is found by projecting
ay from (23) into he region allowed by the constraints, and treomputingy; .
The offsetp is recomputed after every such step.
Additional insight can be obtained by rewriting the last&tipn in terms of the
outputs of the kernel expansion on the exampgleandx, before the optimization

step. Letaj, o denote the values of their Lagrange parameter before tipe ste
Then the corresponding outputs (cf. (11)) read

O; := K]iai( + Kgiaé + C;. (24)

Using the latter to eliminate th€’;, we end up with an update equation fes
which does not explicitly depend orf,

(23)

9y =

O1 — O
K+ Ky —2K15’
which shows that the update is essentially the fraction sf ind second derivative
of the objective function along the direction mfconstraint satisfaction.

Clearly, the same elementary optimization step can beegppd any pair of
two variables, not justy; andasy. We next briefly describe how to do the overall
optimization.

(25)

X
g = ay +



Initialization of the algorithm. We start by setting a random fractienof all

a; to 1/(vl). If v is not an integer, then one of the examples is set to a value in
(0,1/(v¢)) to ensure tha} , a; = 1. Moreover, we set the initigd to max{0;: 4 €

], a; > 0}.

Optimization algorithm.  We then select a first variable for the elementary opti-
mization step in one of the two following ways. Here, we useghorthand'V,,;,
for the indices of variables which are not at bound, §&),;, := {i:i € [{], 0 <
a; < 1/(vf)}. Atthe end, these correspond to points that will sit exaotiythe
hyperplane, and that will therefore have a strong influencisoprecise position.

(i) We scan over the entire data Semtil we find a variable violating a KKT
condition (Bertsekas, 1995, e.g.), i.e. a point such tbat— p) - «; > 0 or
(p—0;)-(1/(vf) — ;) > 0. Once we have found one, say, we picka;
according to

j = argmax ,cqy, |O; — Onl. (26)

(i) Same as (i), but the scan is only performed o%éf,,.

In practice, one scan of type (i) is followed by multiple ssaf type (i), until
there are no KKT violators i$'V,,;,, whereupon the optimization goes back to a
single scan of type (i). If the type (i) scan finds no KKT viaole, the optimization
terminates.

In unusual circumstances, the choice heuristic (26) camiage positive progress.
Therefore, a hierarchy of other choice heuristics is apitiieensure positive progress.
These other heuristics are the same as in the case of patagnition, cf. (Platt,
1999), and have been found to well in our experiments to berteg below.

In our experiments with SMO applied to distribution suppestimation, we
have always found it to converge. However, to ensure coevexg even in rare
pathological conditions, the algorithm can be modifiedhlig cf. (Keerthi et al.,
1999).

We end this session by stating a trick which is of importamceractical im-
plementations. In practice, one has to use a nonzero agctoi@rance such that
two quantities are considered equal if they differ by lesmntkhat. In particular,
comparisons of this type are used in determining whethelirg fes on the mar-
gin. Since we want the final decision function to evaluaté tor points which lie
onthe margin, we need to subtract this constant fyoat the end.

This scan can be accelerated by not checking patterns whictrathe correct side of the hy-
perplane by a large margin, using the method of Joachims9)199

10



5 Theory

In this section, we analyse the algorithm theoreticallgrtsig with the uniqueness
of the hyperplane (Proposition 2). We then describe the ection to binary clas-
sification (Proposition 3), and show that the parametehnaracterizes the fractions
of SVs and outliers (Proposition 4). Following that, we gaveobustness result for
the soft margin (Proposition 5) and finally we briefly statoebounds (Theorem
9).

In this section, we will use italic letters to denote the featspace images of
the corresponding patterns in input space, i.e.

Definition 1 A data set
Tiyenns Xy (28)

is called separable if there exists some= F' such that(w - ;) > 0 for i € [/].

Proposition 2 If the data set (28) is separable, then there exists a unsyyport-
ing hyperplanewith the properties that (1) it separates all data from thégor,
and (2) its distance to the origin is maximal among all suchdrplanes. For any
p > 0, itis given by

1 .
mi% inHQ subject to(w - z;) > p, i € [¢]. (29)
we

Proof Due to the separability, the convex hull of the data does patain the
origin. The existence and uniqueness of the hyperplane fililaws from the
supporting hyperplane theorem (e.g. Bertsekas, 1995).

Moreover, separability implies that there actually exs&gimep > 0 andw € F
such that(w - z;) > p for i € [¢] (by rescalingw, this can be seen to work
for arbitrarily large p). By the Cauchy-Schwartz inequality, the distance of the
hyperplane{z € F : (w - z) = p} to the origin isp/||w||. Therefore the optimal
hyperplane is obtained by minimizingu|| subject to these constraints, i.e. by the
solution of (29). [ |

The following result elucidates the relationship betweiigle-class classification
and binary classification.

11



Proposition 3 (i) Supposgw, p) parametrizes the supporting hyperplane for the
data (28). Ther(w,0) parametrizes the optimal separating hyperplane (passing
through the origin (Vapnik, 1995)) for the labelled data set

{(z1,1),...,(ze, 1), (—21,—1), ..., (—z¢g, —1) }. (30)

(il) Suppose€w, 0) parametrizes the optimal separating hyperplane passirautih
the origin for a labelled data set

{(mlayl)v T (xlayﬁ)}a (7/7 € {il} fori e [ﬁ]) (31)

Suppose, moreover, thatis aligned such thatw - x;) is positive whenevey; = 1,
and thatp/||w/|| is the margin of the optimal hyperplane. Thien p) parametrizes
the supporting hyperplane for the unlabelled data set

{yizr, ... yeme} (32)

Proof Ad (i). Observe that—w, p) parametrizes the supporting hyperplane for
the data set reflected through the origin, and that it is fmri& the one given by
(w, p). This provides an optimal separation of the two sets, wittagice2p, and

a separating hyperplare, 0).

Ad (ii). By assumption, we havg;(w - z;) > p (cf. Vapnik, 1995), hencéw -
yix;) > pfori e [£]. [

Note that this relationship holds true also if we considerseparable problems. In
that casemargin errorsin binary classification (i.e. points which are either on the
wrong side of the separating hyperplane or which fall ingltkemargin) translate
into outliersin single-class classification, i.e. into points which fafl the wrong
side of the hyperplane. Proposition 3 then holds, cum grafhs, $or the training
sets with margin errors and outliers, respectively, rerdove

The utility of Proposition 3 lies in the fact that it allows ts recycle cer-
tain results proven for binary classification (Scholkopak, 1999c¢) for use in the
single-class scenario. The following, explaining the Bigance of the parameter
v, is such a case.

Proposition 4 Assume the solution of (6) satisfigg: 0. The following statements
hold:

(i) v is an upper bound on the fraction of outliers.

(i) v is a lower bound on the fraction of SVs.

12



(iii) Suppose the data (28) were generated independertiy & distributionP (x)
which does not contain discrete components. Suppose, warrdbat the kernel
is analytic and non-constant. With probability 1, asymigtaty, » equals both the
fraction of SVs and the fraction of outliers.

Parts (i) and (ii) follow directly from Proposition 3 and tifigct that outliers are
dealt with in exactly the same way as margin errors in thenogtition problem
for the binary classification case (Scholkopf et al., 1999the basic idea is that
(10) imposes constraints on the fraction of patterns thathavea; = 1/(v¢),
upper bounding the fraction of outliers, and on the fractibrpatterns that must
havea; > 0, the SVs. Alternatively, the result can be proven directhgdd on
the primal objective function (5), as sketched presentithis end, note that when
changingp, the term} _, & will change proportionally to theumberof points that
have a nonzerd; (the outliers), plus, when changingin the positive direction,
the number of points which are just about to get a nongeice. which siton the
hyperplane (the SVs). At the optimum of (5), we thereforeeh@vand (ii).

Part (iii) can be proven by a uniform convergence argumeoivihy that since
the covering numbers of kernel expansions regularized byrianmn some feature
space are well-behaved, the fraction of points which liecyan the hyperplane
is asymptotically negligible (cf. Scholkopf et al., 1999c¢

Proposition 5 (Resistance)Local movements of outliers paralleltodo not change
the hyperplane.

Proof Supposer, is an outlier, i.e£, > 0, hence by the KKT conditions (e.qg.
Bertsekas, 1995y, = 1/(v¢). Transforming it intoz! := z, + 0 - w, where
|0] < &/]|w]||, leads to a slack which is still nonzero, i&. > 0, hence we still
havea, = 1/(v¢). Therefore,a’ = a is still feasible, as is the primal solution
(w', &', p'). Here, we us€! = (1 + 6 - a,)é&; fori # o, w' = w+ 6 - a,w, and
P as computed from (13). Finally, the KKT conditions are stdtisfied, as still
al, = 1/(vf). Thus (Bertsekas, 1995, e.ga),is still the optimal solution. [ |

Note that although the hyperplane does not change, its ganaation inw
andp does.

We now move on to the subject of generalization. Our goal ibadond the
probability that a novel point drawn from the same undedyfistribution lies
outside of the estimated region by a certain margin. We $tarintroducing a
common tool for measuring the capacity of a classf functions that mag to R.

13



Definition 6 Let (X,d) be a pseudo-metric spaédet A be a subset o and
e > 0. AsetB C X is ane-coverfor A if, for everya € A, there exist$ € B such
thatd(a, b) < e. Thee-covering numbeof A, N(e, A), is the minimal cardinality
of ane-cover for A (if there is no such finite cover then it is defined tocb

The idea is thatB should be finite but approximate all of with respect to the

pseudometriel. We will use thd ., distance over a finite samplé = (z1,...,2y)
for the pseudo-metric in the space of functions,
dx(f.9) = Eré?fﬂf(xi) — g(zi)l- (33)

LetN(e, F,¢) = sup X € X*Ny, (e, F). Below, logarithms are to base 2.

Theorem 7 Consider any distribution® on X and anyd € R. Suppose:y, ..., xy
are generated i.i.d. fron®. Then with probabilityl — § over such arf-sample, if
we findf € F such thatf (z;) > 6 + - for all i € [¢],

P{z: f(z) <0 —7} < 2(k+1log %),
wherek = [log N(v, F,2¢)].

The basis of the proof is (Shawe-Taylor et al., 1998, Lemra 3.

We now consider the possibility that for a small number ofng®if (z;) fails
to exceed + «. This corresponds to having a non-zero slack varigble the
algorithm, where we tak8 + v = p/||w|| and use the class of linear functions in
feature space in the application of the theorem. There aliekwewn bounds for
the log covering numbers of this class. We first introduceation for the size of
the shortfall inf ().

Definition 8 Let f be a real valued function on a spage Fix§ € R. Forz € X,
define

d(.’E, f77) = max{(), 0 + Y= f(.’L‘)}
Similarly for a training sequencd’, we define

D(X, f,7) =Y d(z, 7).

reX

Theorem 9 Fix # € R. Consider a fixed but unknown probability distributiéh
on the input spac& and a class of real valued functiofswith rangela, b]. Then

2j.e. with a distance function that differs from a metric iatlit is only semidefinite
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with probability 1 — ¢ over randomly drawn training sequence®f size/, for all
v > 0andanyf € F,

P{z:f(z) < —yandz ¢ X} < 2(k+log 4),

wherek = [log N(v/2,F,2¢0) + w log (%) log (3%(:;“)2)1 .

The proof is based on similar proofs for the classificatiosecea (Shawe-Taylor
and Cristianini, 1999, Theorem 3). The theorem bounds tbbalility of a new
point falling in the region for whicly (x) has value less thath— -, this being the
complement of the estimate for the support of the distrduti In the algorithm
described in this paper, one would use the hyperplane dhify@~y/||w| towards
the origin to define the region. Note that there is no restricplaced on the class
of functions though these functions could be probabilitpsity functions.

The choice ofy gives a trade-off between the size of the region over which
the bound holds (increasingincreases the size of the region) and the size of the
probability with which it holds (increasing decreases the size of the log covering
numbers).

The result shows that we can bound the probability of pomitsf outside the
region of estimated support by a quantity involving theaatf the log covering
numbers (which can be bounded by the fat shattering dimeraticcale propor-
tional to-y) and the number of training examples, plus a factor invgj\tme 1-norm
of the slack variables.

The result is stronger than related results given by Benidawd Lindenbaum
(1997), since their bound involves the square root of the cdtthe Pollard dimen-
sion (the fat shattering dimension whertends to 0) and the number of training
examples.

The above bounds are, nevertheless, not entirely satisyaend their inclu-
sion here is much more as a sanity check than as a “closetliteswy for the
algorithm presented. Whilst most of the apparent techrgegls can be readily
filled (for example determining the covering numbers for ¢teess of functions in-
duced by use of a particular kernel using methods as in Willien et al. (1999)),
there are still considerable gaps. These gaps do not iaalithe algorithm; they
simply indicate an incomplete theory, one we hope to cora@ésome stage. The
key difficulty is relating the margin achieved by the algomit to the parameter
~. Unlike in the support vector machine case, there is no ahlimkage imposed
by the problem itself. Furthermore, whilst not immediatalyparent, the results
stated do not actually give guidance as to how to chose theekparameter, al-
though they would if a connection betwegiand the margin achieved were forced.
The latter connection is not necessary, but it could be rat#® by noting that it
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frac. SVs/OLs| 0.54, 0.43 0.59, 0.47 0.65, 0.38
marginp/||w|| 0.84 0.70 0.48

Figure 1: First two pictures: A single-class SVM applied to two toy problems;
v = ¢ = 0.5, domain:[-1, 1]?. Note how in both cases, at least a fraction aff

all examples is in the estimated region (cf. table). Thedamlue ofv causes the
additional data points in the upper left corner to have atmasinfluence on the
decision function. For smaller values of such ag).1 (third picture), the points
cannot be ignored anymore. Alternatively, one can forcatberithm to take these
‘outliers’ (OLs) into account by changing the kernel wid):(in thefourth picture
usinge = 0.1,v = 0.5, the data is effectively analyzed on a different lengthescal
which leads the algorithm to consider the outliers as megnimpoints.

seems plausible that if we obtain a very large margin of sejuar to the origin,
we would be more likely to accept a larggwith the associated risk of ending up
with more false positives from the “unknown” class). Measgry relative to the
margin would then lead to bounds which depend on the margohwdich justify
our algorithm that tries to maximize the margin.

Equivalently, we could argue that we try to maximize the nrarg order to
have the freedom to use a largeleading to smaller values of the error bounds,
while still not including the “unknown” class. Evidenthhis argument implicitly
makes prior assumptions about the unknown class, in phatithat it is in some
sense centered around the origin from which we try to sepdtst data. The
algorithm could be modified to accomodate this case, butepibs we shall not
go into further detail on that matter.

6 Experiments

We apply the method to artificial and real-world data. Figlrdisplays 2-D toy
examples, and shows how the parameter settings influensaitn#@n.

Figure 2 shows a plot of the outputs - ®(x)) on training and test sets of the
US postal service database of handwritten digits. The databontaing298 digit
images of sizel6 x 16 = 256; the last2007 constitute the test set. We fed our
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Figure 2: Experiments on the US postal service OCR datasetodhizer for
digit 0; output histogram for the exemplars @fn the training/test set, and on test
exemplars of other digits. The-axis gives the output values, i.e. the argument of
the sgn function in (11). Far = 50% (top), we get50% SVs and49% outliers
(consistent with Proposition 4%4% true positive test examples, and zero false
positives from the “other” class. For = 5% (bottom) we get6% and 4% for
SVs and outliers, respectively. In that case, the true pesiaite is improved to
91%, while the false positive rate increases7t®. The thresholdg is marked in
the graphs.

Note, finally, that the plots show a Parzen windows densitiynete of the output
histograms. In reality, many examples sit exactly at theghold value (the non-
bound SVs). Since this peak is smoothed out by the estimidierfractions of
outliers in the training set appear slightly larger tharhibsid be.
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algorithm, using a Gaussian kernel (4) of width= 0.5 - 256 (a common value
for SVM classifiers on that data set, cf. Scholkopf et al9@)9, with the training
instances of digit only. Testing was done on both digitand on all other digits.
As shown in figure 2y = 50% leads tozerofalse positives (i.e. even though the
learning machine has not seen any ries-during training, it correctly identifies
all non0-s as such), while still recognizingd% of the digits0 in the test set.
Higher recognition rates can be achieved using smallergatdv: for v = 5%,
we get91% correct recognition of digit$ in the test set, with a fairly moderate
false positive rate of%.

Whilst leading to encouraging results, this experiment riidl really address
the actual task the algorithm was designed for. Therefoee next focussed on
a problem of novelty detection. Again, we utilized the USRS sowever, this
time we trained the algorithm on the test set and used it totiigeoutliers —
it is folklore in the community that the USPS test set (Figc8ntains a number
of patterns which are hard or impossible to classify, dueegnsentation errors
or mislabelling (e.g. Vapnik, 1995). In the experiment, wgmented the input
patterns by ten extra dimensions corresponding to the tddeds of the digits.
The rationale for this is that if we disregarded the labdiere would be no hope to
identify mislabelled patterns as outliers. Vice versahwiite labels, the algorithm
has the chance to identify both unusual patterns and usttglps with unusual
labels. Fig. 4 shows the 20 worst outliers for the USPS tdstaspectively. Note
that the algorithm indeed extracts patterns which are varg o assign to their
respective classes. In the experiment, we used the sam& kadth as above, and
av value of5%.

In the last experiment, we tested the scaling behaviour eptioposed SMO
solver which is used for training the learning machine (Fy. It was found to
depend on the value of utilized. For the small values af which are typically
used in outlier detection tasks, the algorithm scales vesl 1o larger data sets,
with a dependency of training times on the sample size wisiett most quadratic.

6928 13%4S 3
285 7010%27

Figure 3: A subset 020 examples randomly drawn from the USPS test set, with
class labels.
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v | fraction of OLs| fraction of SVs| training time
1% 0.0% 10.0% 36
2% 0.0% 10.0% 39
3% 0.1% 10.0% 31
4% 0.6% 10.1% 40
5% 1.4% 10.6% 36
6% 1.8% 11.2% 33
7% 2.6% 11.5% 42
8% 4.1% 12.0% 53
9% 5.4% 12.9% 76
10% 6.2% 13.7% 65
20% 16.9% 22.6% 193
30% 27.5% 31.8% 269
40% 37.1% 41.7% 685
50% 47.4% 51.2% 1284
60% 58.2% 61.0% 1150
70% 68.3% 70.7% 1512
80% 78.5% 80.5% 2206
90% 89.4% 90.1% 2349

Table 1: Experimental results for various values of theieutontrol constant.
Note thatr bounds the fractions of outliers and support vectors fromvatand
below, respectively (cf. Proposition 4). As we are not in #symptotic regime,
there is some slack in the bounds; nevertheleggn be used to control the above
fractions. Note, moreover, that training times (CPU timséconds on a Pentium
Il running at 450 MHz) increase asapproaches. This is related to the fact that
almost all Lagrange multipliers will be at the upper boundhat case (cf. Sec. 4).
The system used in the outlier detection experiments is shiowold face.
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-153 3 -1436 -1286 -1230-1177-93 5-78 0-58 7-52 6-48 3

Figure 4: Ouitliers identified by the proposed algorithm,kezh by the negative
output of the SVM (the argument of (11)). The outputs (forwerience in units
of 10~°) are written underneath each image in italics, the (allpgtasds labels are
given in bold face. Note that most of the examples are “diffida that they are

either atypical or even mislabelled.

7 Discussion

One could view the present work as an attempt to provide a tggevibnm which

is in line with Vapnik’s principle never to solve a problem st is more general
than the one that one is actually interested in. E.g., im8@as where one is only
interested in detectingovelty it is not always necessary to estimate a full density
model of the data. Indeed, density estimation is more diffitian what we are
doing, in several respects.

Mathematically speaking, a density will only exist if thedemlying probability
measure possesses an absolutely continuous distributrartion. However, the
general problem of estimating the measure for a large clasgts, say the sets
measureable in Borel's sense, is not solvable (for a dismussee e.g. Vapnik,
1998). Therefore we need to restrict ourselves to makinggerstent about the
measure okomesets. Given a small class of sets, the simplest estimatarhwhi
accomplishes this task is the empirical measure, whichlgitopks at how many
training points fall into the region of interest. Our algbr does the opposite. It
starts with the number of training points that are supposddilt into the region,
and then estimates a region with the desired property. Oftere will be many
such regions — the solution becomes unique only by applyisgalarizer, which
in our case enforces that the region be small in a featureesps®ociated to the
kernel.

Therefore, we must keep in mind that the measure of smalinetss sense
depends on the kernel used, in a way that is no different tco#tmr method that
regularizes in a feature space. A similar problem, howeappears in density
estimation already when done in input space. jdenote a density ofX. If we
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Figure 5: Training times vs. data set sizes (both axes déstat base 2; CPU
time in seconds on a Pentium Il running at 450 MHz). As in Tdhlé can be seen
that larger values af generally lead to longer training times (note that the plists
different y-axis ranges). However, they also differ in trsgaling with the sample
size. For large values af, training times are roughly proportional to the sample
size raised to the power @5 (right plot). For valuesr < 10% (left plot), i.e.
those typically used in outlier detection experiments (i B, we used’ = 5%),
the scaling exponent is belov(the exponents can be directly read off from the
slope of the graphs, as they are plotted in log scale withlexyig spacing). Note
that the scalings are better than the cubic one that one vesylelct when solving
the optimization problem using all patterns at once, cf.. 8ecAs in the other
experiments, we used = 0.5 - 256, however we only trained on subsets of the
USPS test set.
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perform a (nonlinear) coordinate transformation in theuingomainX, then the
density values wilchange loosely speaking, what remains constanp(is) - dz,
while dz is transformed, too. When directly estimating the probgbiheasureof
regions, we are not faced with this problem, as the regiotsnaatically change
accordingly.

An attractive property of the measure of smallness that weseho use is
that it can also be placed in the context of regularizaticeotiy, leading to an
interpretation of the solution as maximally smooth in a sewhich depends on
the specific kernel used. More specifically, let us assuneitteaGreen’s function
of P* P for an operato® mapping into some dot product space (Smola et al., 1998;
Girosi, 1998), and take a look at the dual objective functlwat we minimize,

Zaiozjk(xi,x]-) = Zazay Xz;- 5x]())

i,J
_ Zaza7 x“. (P*Pk)(xj,))
_ Za,% ((PR) (i) - (PR)x;.,)

- ((PZaik)(xi,. PZ@, (x5,-))

= |IPfIP,

using f(x) = >, ak(x;,x). The regularization operators of common kernels
can be shown to correspond to derivative operators (PoggiloGirosi, 1990) —
therefore, minimizing the dual objective function corresgds to maximizing the
smoothness of the functiofi(which is, up to a thresholding operation, the function
we estimate). This, in turn, is related to a prigif) ~ e~ '"/I” on the function
space.

Interestingly, as the minimization of the dual objectiveadtion also corre-
sponds to a maximization of the margin in feature space, aivaent interpreta-
tion is in terms of a prior on the distribution of the unknowther class (the “novel”
class in a novelty detection problem) — trying to separagedéta from the origin
amounts to assuming that the novel examples lie around i@ .or

The main inspiration for our approach stems from the edariesk of Vapnik
and collaborators. In 1962, they proposed an algorithm aracterizing a set of
unlabelled data points by separating it from the origin gsarhyperplane (Vapnik
and Lerner, 1963; Vapnik and Chervonenkis, 1974). Howehey, quickly moved
on to two-class classification problems, both in terms obadlgms and in terms of
the theoretical development of statistical learning the@hich originated in those
days.
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From an algorithmic point of view, we can identify two shantaings of the
original approach which may have caused research in trestitin to stop for more
than three decades. Firstly, the original algorithm in (M&apand Chervonenkis,
1974) was limited to linear decision rules in input spaceosdly, there was no
way of dealing with outliers. In conjunction, these redions are indeed severe
— a generic dataset need not be separable from the origin pgexplane in input
space.

The two modifications that we have incorporated dispose edalshortcom-
ings. First, the kernel trick allows for a much larger claggumctions by non-
linearly mapping into a high-dimensional feature space, thereby increases the
chances of a separation from the origin being possible. iticpéar, using a Gaus-
sian kernel (4), such a separation exists for any dataset ., x;: to see this,
note thatk(x;,y;) > 0 for all 7, , thus all dot products between mapped patterns
are positive, implying that all patterns lie inside the sartbant. Moreover, since
k(x;,x;) = 1forall 7, they all have unit length. Hence they are separable from the
origin. The second modification directly allows for the pbggy of outliers. We
have incorporated this ‘softness’ of the decision rule gghre v-trick (Scholkopf
et al., 1999¢) and thus obtained a direct handle on the dradi outliers.

We believe that our approach, proposing a concrete algonitith well-behaved
computational complexity (convex quadratic programmifug)a problem that so
far has mainly been studied from a theoretical point of vi@s hbundant practi-
cal applications. To turn the algorithm into an easy-to-bksek-box method for
practicioners, questions like the selection of kernel pesiers (such as the width
of a Gaussian kernel) have to be tackled. It is our expecidtiat the theoretical
results which we have briefly outlined in this paper will pice a solid foundation
for this formidable task.
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