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More Kernels and Their Properties

These notes are slightly edited from previous scribe notes (in Spring 2006) taken by Mashhood
Ishaque.

1 Kernels and Kernel Methods

In the previous lecture we introduced the idea of kernels and gave the Boolean kernels and dual
perceptron algorithm that works with kernels. Here we introduce some more common kernels and
kernel methods.

We say that k(x, y) is a kernel function iff there is a feature map φ such that for all x, y,

k(x, y) = ~φ(x) · ~φ(y)

Any learning algorithm that only depends on the inner product of examples, and therefore, can be
run kernels, is called kernel method.

Nearest Neighbors: We next show that k-nearest neighbor (kNN) is also a kernel method. kNN
classifies new example by finding k closest examples in the sample and taking a majority vote on
the label. So all we need is to find distances between examples. We have

|| ~φ(x) − ~φ(y)||2 =
∑

(φi(x) − φi(y))2

=
∑

φi(x)2 +
∑

φi(y)2 − 2
∑

φi(x)φi(y)

= k(x, x) + k(y, y) − 2k(x, y)

So indeed the distance can be calculated using 3 calls to the kernel function.

The polynomial kernel: Let x, y ∈ Rn. Define k(x, y) = (〈x, y〉 + c)d for c, d ∈ R. This
corresponds to a feature map φ including polynomials of the original variables.

For example if d = 2, then:
k(~x, ~y) = (

∑

xiyi + c)2

= (
∑

xiyi + c)(
∑

xjyj + c)
=

∑

i

∑

j xiyi · xjyj + 2c
∑

i xiyi + c2

=
∑

i

∑

j xixj · yiyj +
∑

i

(√
2c xi

) (√
2c yi

)

+ c2

φ has n2 entries from
∑

i

∑

j =⇒ (feature is xixj )

+ n entries from
∑

i =⇒ (feature is
√

2c xi )
+ 1 =⇒ (feature is c)
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The Gaussian kernel: is defined as k(x, y) = e−||~x−~y||2/σ. By using Taylor’s expansion ea =
1 + a + . . . + 1

k!a
k one can see that e~x·~y is a kernel with (an infinite set of) features corresponding

to polynomial terms. Then we can normalize by σ and divide the corresponding features by e||x||

and e||y|| to get the Gaussian kernel.

2 Linear Algebra

A quick review was given using slides. See slide copies. The main result we need is as follows:
Any symmetric matrix K with real valued entries can be written in the form K = PDP T

where P = ( ~V1, ~V2, ..., ~Vm), ~Vi are eigen vectors of K that form an orthonormal basis (so we also
have P T = P−1) and where D is a diagonal matrix with Di,i = λi being the corresponding eigen
values. A square matrix A is positive semi-definite (PSD) iff for all vectors c we have cT Ac =
∑

i

∑

j cicjAi,j ≥ 0. It is well known that a matrix is positive semi-definite iff all the eigen values
are non-negative.

3 Mercer’s Theorem

The sample S = x1, x2, ..., xm includes m examples. The Kernel (Gram) matrix K is an m × m

matrix including inner products between all pairs of examples i.e., Ki,j = k(xi, xj). K is symmetric
since k(x, y) = k(y, x) = φ(x) . φ(y)

Mercer’s Theorem: A symmetric function k(., .) is a kernel iff for any finite sample S the
kernel matrix for S is positive semi-definite.

One direction of the theorem is easy: if k() is a kernel, and K is the kernel matrix with Ki,j =
k(xj , xj). Then cT Kc =

∑

i

∑

j cicjKi,j =
∑

i

∑

j cicjφ(xi)φ(xj) = (
∑

i ciφ(xi))(
∑

j cjφ(xj)) =

||(∑j cjφ(xj))||2 ≥ 0.
For the other direction we will prove a weaker result.
Theorem: Consider a finite input space X = {x1, x2, ..., xm} and the kernel matrix K over the

entire space. If K is positive semi-definite then k(., .) is a kernel function.
Proof: By the linear algebra facts above we can write K = PDP T .
Define a feature mapping into a m-dimensional space where the lth bit in feature expansion for

example xi is φl(x
i) =

√
λl (~Vl)i.

The inner product is

~φ(xi) · ~φ(yj) =

m
∑

l=1

φl(x
i) φl(x

j)

=
m

∑

l=1

λl(Vl)i (Vl)j

We want to show that
k(xi, xj) = ~φ(xi) · ~φ(yj)

Consider i, jth entry of the matrix K = k(xi, xj). We have the following identities where the
last one proves the result.

Ki,j = [PDP T ]i,j
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= [[PD]P T ]i,j

[PD] = ( ~V1, ~V2, ..., ~Vm)D

[PD]i,l = (Vl)i λl

[[PD]P T ]i,j =
m

∑

l=1

(Vl)iλl(Vl)j

Note that Mercer’s theorem allows us to work with a kernel function without knowing which
feature map it corresponds to or its relevance to the learning problem. This has often been used
in practical applications.

4 More Properties of Kernels

Consider any space X of samples and kernels k1(., .) and k2(., .) over X. Then k(., .) is a kernel with
(1) k(x, y) = k1(x, y) + k2(x, y)
(2) k(x, y) = ak1(x, y) where a > 0
(3) k(x, y) = f(x) · f(y) for any function f on x

(4) k(x, y) = k1(x, y) · k2(x, y)

(5) k(x, y) = k1(x,y)√
k1(x,x)

√
k1(y,y)

Proof of (1):
K = K1 + K2

where we add matrices component-wise

∀~x, ~XT K ~X = ~XT K1
~X + ~XT K2

~X ≥ 0

Another Proof: Let
φ1(x) = (φ1

1(x), ..., φ1
N1

(x))

φ2(x) = (φ2
1(x), ..., φ2

N2
(x))

be the feature map for K1 and K2

Define φ(x) by concatenating the feature maps (or alternate features if the spaces are infinite)

φ(x) = (φ1
1(x), ..., φ1

N1
(x), φ2

1(x), ..., φ2
N2

(x))

The mapping clearly satisfies φ(x) · φ(y) = φ1(x) · φ1(y) + φ2(x) · φ2(y).
Proof of (2):

k(x, y) = (
√

aφ1
1(x), ...,

√
aφ1

N (x))(
√

aφ1
1(y), ...,

√
aφN

1 (y) = ak1(x, y)

Proof of (3): there is just one feature defined by f()
Proof of (4): multiply out the φ expressions for k1 and k2 to see that k is a kernels with the

space of products of features from φ1 and φ2.
Proof of (5):

Let φ1(x) be as above. Define φ(x) by φi(x) =
φ1

i
(x)

‖φ1(x)‖
. Then k() calculates the inner product

for φ().
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